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Effect of heavy metals on germination of seeds

Abstract
With the expansion of the world population, the environmental pollution and toxicity by chemicals raises concern. Rapid 
industrialization and urbanization processes has led to the incorporation of pollutants such as pesticides, petroleum products, 
acids and heavy metals in the natural resources like soil, water and air thus degrading not only the quality of the environment, but 
also affecting both plants and animals. Heavy metals including lead, nickel, cadmium, copper, cobalt, chromium and mercury are 
important environmental pollutants that cause toxic effects to plants; thus, lessening productivity and posing dangerous threats to 
the agro‑ecosystems. They act as stress to plants and affect the plant physiology. In this review, we have summarized the effects 
of heavy metals on seeds of different plants affecting the germination process. Although reports exist on mechanisms by which 
the heavy metals act as stress and how plants have learnt to overcome, the future scope of this review remains in excavating 
the signaling mechanisms in germinating seeds in response to heavy metal stress.
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INTRODUCTION

Soil is a valuable and non‑renewable resource essential 
for germination of  seeds, survival and growth of  plants 
thus supporting every live form on earth. However in 
the modern world, numerous soil pollutants restrict the 
growth of  plants. Abiotic stress factors including salinity, 
drought, extreme temperatures, chemical toxicity and 
oxidative stress from the environment are the major 
causes of  worldwide crop loss that pose serious threats 
to agricultural produce. With the ongoing technological 
advancements in industrialization and urbanization 
process, release of  toxic contaminants like heavy metals 
in the natural resources has become a serious problem 
worldwide. Metal toxicity affects crop yields, soil biomass 
and fertility.

Presence of  heavy metals, like nickel, cobalt, cadmium, 
copper, lead, chromium and mercury in air, soil and water 
can cause bioaccumulation affecting the entire ecosystem 
and pose harmful health consequences in all life forms. The 
major sources of  pollution in the state of  Odisha in India 
are overburdens of  mine, industrial effluent, fertilizers 
and pesticides, extra salts and elements that degrade the 
soil quality.[1] Metals and chemicals in higher concentration 
hamper the plant germination, growth and production 
mainly associated with the physiological, biochemical and 
genetic elements of  the plant system.

In the mining areas located in the districts of  Jajpur, 
Keonjhar, Mayurbhanj and Sundargarh districts of  Odisha 
in India, nearly 45% to 67% of  iron and 45% to 54% 
of  chromium contamination are reported.[1] This high 
concentration of  salts and metals acts as stress to plants 
affecting the yield of  crops and viability of  flora and fauna 
adversely not only in the area of  location but all adjoining 
areas by spreading thus raising concern. The major effects 
of  heavy metals on seeds  [Figure  1] are manifested by 
overall abnormalities and decrease in germination, reduced 
root and shoot elongation, dry weight, total soluble 
protein level,[2] oxidative damage, membrane alteration, 
altered sugar and protein metabolisms, nutrient loss[3,4] 

Access this article online
Quick Response Code:

Website: 
www.jnsbm.org

DOI: 
10.4103/0976-9668.116964

Review Article



Sethy and Ghosh: Heavy metal toxicity in seeds

273 Journal of Natural Science, Biology and Medicine | July 2013 | Vol 4 | Issue 2

all contributing to seed toxicity and productivity loss. 
The heavy metal toxicity on Arabidopsis manifested by 
decreased seed germination rate was reported in the order 
of  Hg>Cd>Pb>Cu.[5]

Although reports exist over effect of  the metal toxicity 
on plants, very few reports exist on how heavy metals 
affect seed physiology. While keeping in mind the rising 
concerns over heavy metal stress affecting agriculture 
produce, in this review we focus our attention to the effect 
of  different heavy metals on seeds of  different plants 
affecting germination.

Effect of heavy metals on seeds
Nickel  (Ni) is reported to be toxic to most plant 
species affecting amylase, protease and ribonuclease 
enzyme activity thus retarding seed germination and 
growth of  many crops.[3] It has been reported to affect 
the digestion and mobilization of  food reserves like 
proteins and carbohydrates in germinating seeds,[3,6] 
reducing plant height, root length, fresh and dry weight, 
chlorophyll content and enzyme carbonic anhydrase 
activity, and increasing malondialdehyde content (MDA) 
and electrolyte leakage.[7] Ni stress has been reported to 
affect photosynthetic pigments, lessen yield and cause 
accumulation of  Na+, K+ and Ca2+ in mung bean.[8] The 
combination of  Ni and NaCl in germinating seeds of  
Brassica nigra causes significant decline in growth, leaf  
water potential, pigments and photosynthetic machinery 
by increased electrolyte leakage, lipid peroxidation, H2O2 
content, activity of  anti‑oxidative enzymes and the level of  
proline. It is also reported to decrease membrane stability 
and nitrate reductase and carbonic anhydrase activity.[9]

Lead  (Pb) has been reported to strongly affect the seed 
morphology and physiology. It inhibits germination, 
root elongation, seedling development, plant growth, 

transpiration, chlorophyll production, and water and 
protein content, causing alterations in chloroplast, 
obstructing electron transport chain, inhibition of  Calvin 
cycle enzymes, impaired uptake of  essential elements, Mg 
and Fe, and induced deficiency of  CO2 due to stomatal 
closure.[4] Pb toxicity has been reported to retard the radical 
emergence via enhanced protein and carbohydrate contents, 
affecting the activity of  peroxidases and polyphenol 
oxidases, oxidizing ability of  roots and overall lowering 
of  carbohydrate‑metabolizing enzymes–α‑amylases, 
β‑amylases, acid invertases and acid phosphatases,[10] and 
altering genomic DNA profile.[11] Pb‑polluted soils have 
been shown to inhibit seedling growth via increased lipid 
peroxidation, and activation of  superoxide dismutase (SOD), 
guaiacol peroxidase (POD) and ascorbate peroxidase  (APX) 
enzymes and the glutathione (GSH)‑ascorbate cycle thus 
playing dominant role in removing H2O2. It also caused 
up‑regulation of  HSP70. Together with lipid peroxidation, 
HSP70 are reported to be markers for Pb‑induced stress 
in soils.[12]

Copper  (Cu) has been reported to be toxic to sunflower 
seedlings inducing oxidative stress via generation of  reactive 
oxygen species  (ROS) and by decreased catalase  (CAT) 
activity via oxidation of  protein structure.[13] Cu stress 
leads to reduced germination rate[13‑15] and induces biomass 
mobilization by release of  glucose and fructose thereby 
inhibiting the breakdown of  starch and sucrose in reserve 
tissue by inhibition in the activities of  alpha‑amylase and 
invertase isoenzymes.[13] Metallothionein‑like protein, 
membrane‑associated protein‑like protein, putative 
wall‑associated protein kinase, pathogenesis‑related proteins 
and the putative small GTP‑binding protein Rab2, were 
up‑regulated while cytochrome P450 (CYP90D2), thioredoxin 
and GTPase were down‑regulated by Cu stress.[16] Cu toxicity 
generated oxidative stress by up‑regulating antioxidant 
and stress‑related proteins like glyoxalase I, peroxiredoxin, 
aldose reductase, and regulatory proteins like DnaK‑type 
molecular chaperone, UlpI protease and receptor‑like kinase 
thereby disruptive metabolic processes. Proteomics studies 
has revealed that Cu toxicity inhibit seed germination by 
down‑regulating activity of  alpha‑amylase or enolase. It has 
been reported to affect overall metabolism, water uptake 
and failure to mobilize reserve food.[17]

Cadmium  (Cd) has been shown to cause delay in 
germination, induce membrane damage, impair food reserve 
mobilization by increased cotyledon/embryo ratios of  total 
soluble sugars, glucose, fructose and amino acids,[18] mineral 
leakage leading to nutrient loss,[19] accumulation in seeds 
and over‑accumulation of  lipid peroxidation products[20,21] 
in seeds. It has been reported to reduce the germination 
percent, embryo growth and distribution of  biomass, and 
inhibit the activities of  alpha‑amylase and invertases: Soluble 

Figure 1: Different effects of heavy metals on seed germination
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acid (INV‑AS), soluble neutral (INV‑NS), cell wall bound 
acid (INV‑AW), impair membrane integrity by high MDA 
content and lipoxygenase  (LOX) activity,[19] reduce water 
content, shoot elongation and biomass.[20] Cd toxicity led 
to stimulated expression of  Gpx (a thioredoxin‑dependent 
enzyme in plants) and a drastic reduction in glutathione 
reductase (GR) activity thereby modulating the level of  thiol 
during the germination.[21] Cd has been reported to impair 
mitochondrial functioning by altering redox regulation via 
levels of  glutaredoxin  (Grx), glutathione reductase  (GR) 
activities and glutathione  (GSH) concentrations in 
cotyledons and the embryo.[21] Cd toxicity leading to 
up‑regulated protein synthesis of  the defense and 
detoxification, antioxidant and germination processes is 
reported.[20] Cobalt (Co) has been reported to induce DNA 
methylation in Vicia faba seeds.[22]

Plant strategies to overcome heavy metal stress
Plants have evolved strategies to combat heavy metal 
stress. A  few studies have reported the genetic and 
biochemical elements in plants helping them overcome 
heavy metal stress. The toxic effects of  Cr manifested 
by reduced growth, lowered contents of  chlorophyll, 
protein, proline, increased MDA content and elevated 
metal uptake were reported to be overcome by plant 
hormone 28‑homobrassinolide  (28‑HBL) belonging to 
brassinosteroids (BRs) group via regulation of  antioxidant 
enzymes.[23] Overproduction of  glyoxylase enzymes GLY I 
and/or GLY II enzymes that detoxify methyl‑glyoxal in 
Arabidopsis transgenic plants have been reported to 
provide tolerance toward salinity and heavy metal 
stresses.[24] The gene CDR3 isolated from Cd‑resistant 
Arabidopsis plant indicated their role in the regulation of  
heavy metal resistance as well as seed development and 
flowering by increased expression of  GSH1 gene leading 
to GSH synthesis and increased GSH content.[25] ACBP1 
has been reported to enable tolerance to Pb toxicity in 
Arabidopsis.[26] Regulated expression of  sulfur metabolism 
by ATP sulfurylase (APS) and adenosine 5’ phosphosulfate 
reductase  (APR), up‑regulated expression of  Ser acetyl 
transferase (SAT) and O‑acetyl‑ser (thiol)‑lyase (OASTL) 
are reported to enable plants overcome Cd toxicity. Glutamyl 
cysteine synthetase (GCS) and glutathione synthetase (GS) 
over‑expression has been reported to catalyze GSH 
synthesis from Cys, and is reported to improve Cd tolerance 
in plant. Phytochelatin synthase  (PCS), activated plant 
antioxidative system, metal transporter genes also have 
been reported to contribute to Cd tolerance.[27]

DISCUSSION

Although plant defense strategies exist to cope with heavy 
metal toxicity via reduced uptake into the cell, sequestration 

into vacuoles by the formation of  complexes, binding 
by phytochelatins, synthesis of  osmolytes, activation of  
various antioxidants to combat ROS, altered expression of  
enzymes, overexpression of  genes exist,[1,23‑28] mechanisms 
by which germinating seeds combat heavy metal stress 
remains largely unknown. The future scope of  this review 
remains in understanding the biochemistry of  heavy metal 
toxicity in germinating seeds. Understanding such strategies 
in seeds to overcome such stress and manipulation of  
pathways and biomolecules involved will lead to better 
agricultural produce despite heavy metal toxicity from 
contaminated soil.
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